Involvement of cell surface ATP synthase in flow-induced ATP release by vascular endothelial cells.
نویسندگان
چکیده
Endothelial cells (ECs) release ATP in response to shear stress, a mechanical force generated by blood flow, and the ATP released modulates EC functions through activation of purinoceptors. The molecular mechanism of the shear stress-induced ATP release, however, has not been fully elucidated. In this study, we have demonstrated that cell surface ATP synthase is involved in shear stress-induced ATP release. Immunofluorescence staining of human pulmonary arterial ECs (HPAECs) showed that cell surface ATP synthase is distributed in lipid rafts and co-localized with caveolin-1, a marker protein of caveolae. Immunoprecipitation indicated that cell surface ATP synthase and caveolin-1 are physically associated. Measurement of the extracellular metabolism of [(3)H]ADP confirmed that cell surface ATP synthase is active in ATP generation. When exposed to shear stress, HPAECs released ATP in a dose-dependent manner, and the ATP release was markedly suppressed by the membrane-impermeable ATP synthase inhibitors angiostatin and piceatannol and by an anti-ATP synthase antibody. Depletion of plasma membrane cholesterol with methyl-beta-cyclodextrin (MbetaCD) disrupted lipid rafts and abolished co-localization of ATP synthase with caveolin-1, which resulted in a marked reduction in shear stress-induced ATP release. Pretreatment of the cells with cholesterol prevented these effects of MbetaCD. Downregulation of caveolin-1 expression by transfection of caveolin-1 siRNA also markedly suppressed ATP-releasing responses to shear stress. Neither MbetaCD, MbetaCD plus cholesterol, nor caveolin-1 siRNA had any effect on the amount of cell surface ATP synthase. These results suggest that the localization and targeting of ATP synthase to caveolae/lipid rafts is critical for shear stress-induced ATP release by HPAECs.
منابع مشابه
Visualization of flow-induced ATP release and triggering of Ca2+ waves at caveolae in vascular endothelial cells.
Endothelial cells (ECs) release ATP in response to shear stress, a fluid mechanical force generated by flowing blood but, although its release has a crucial role in controlling a variety of vascular functions by activating purinergic receptors, the mechanism of ATP release has never been established. To analyze the dynamics of ATP release, we developed a novel chemiluminescence imaging method b...
متن کامل[Blood flow sensing mechanism via calcium signaling in vascular endothelium].
The structure and function of blood vessels adapt to environmental changes, for example, physical development and exercise. This phenomenon is based on the ability of endothelial cells (ECs) to sense and respond to blood flow. ECs are in direct contact with blood flow and exposed to shear stress. A number of recent studies have revealed that ECs recognize changes in shear stress and transmit si...
متن کاملEndothelial cell surface F1-F0 ATP synthase is active in ATP synthesis and is inhibited by angiostatin.
Angiostatin blocks tumor angiogenesis in vivo, almost certainly through its demonstrated ability to block endothelial cell migration and proliferation. Although the mechanism of angiostatin action remains unknown, identification of F(1)-F(O) ATP synthase as the major angiostatin-binding site on the endothelial cell surface suggests that ATP metabolism may play a role in the angiostatin response...
متن کاملDomain-Specific Partitioning of Uterine Artery Endothelial Connexin43 and Caveolin-1.
Uterine vascular adaptations facilitate rises in uterine blood flow during pregnancy, which are associated with gap junction connexin (Cx) proteins and endothelial nitric oxide synthase. In uterine artery endothelial cells (UAECs), ATP activates endothelial nitric oxide synthase in a pregnancy (P)-specific manner that is dependent on Cx43 function. Caveolar subcellular domain partitioning plays...
متن کاملRadiation-induced expression of platelet endothelial cell adhesion molecule-1 in cerebral endothelial cells
Background: Radiation-induced molecular changes on the endothelial surface of brain arteriovenous malformations (AVM) may be used as markers for specific vascular targeting agents. In this study, we examined the level of expression of platelet endothelial cell adhesion molecule-1 (PECAM-1) on brain endothelial cell surface after radiation treatment, with the aim of targeting the radiation-induc...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Heart and circulatory physiology
دوره 293 3 شماره
صفحات -
تاریخ انتشار 2007